

A Novel Approach for Drinking Water Installations

Roland Blumenthal Gebr. Kemper GmbH + Co. KG Olpe, Germany

Building Technology – Cast Products – Rolled Products

Contents

- Definitions
- Motivation
- Legislation
- Solution
- New approach
 - Plumbing systems
 - Comparison
 - Cost estimate
 - References
- Conclusions

Definitions

This presentation is about clean building water systems (domestic and process water) and focusses on

- the <u>piping system</u> in a building
 - and not on the fixtures, faucets, shower heads etc.
 - and also not on the water (quality) entering the building
- "Clean" or "Hygienic" in this context means
- sufficiently low number of <u>waterborne pathogens</u> in the water (being not harmful to humans)
 - and not e.g. the amount of minerals, scale or metal ions

Motivation / Facts

Legislation

- WHO Guidelines for drinking water quality
- European Drinking Water Directive EG 98/83/EC

Germany

- Infection Protection Act (IfSG)
- Clean Drinking Water Act (TrinkwV) (rev. 2013)
- Several Codes, Standards and Guidelines
- USA
 - Clean Water Act
 - ASHRAE 188 P and ASHRAE Guideline 12-2000
 - Temperature < 68°F / 77°F for CWS and > 122°F / 131°F for HWS
 - Avoid stagnation, dead legs etc.

Solution

Provide cold (CWS) and hot (HWS) water and

open every faucet and shower, flush every toilet and use every appliance on a regular basis to

- achieve correct temperatures
- avoid stagnation
- ⇒ no proliferation of waterborne pathogens

BUT: Is that always achievable in a building?

N()

Statement

- There is a new plumbing system available that
 - eliminates (or at least clearly minimizes) the risk of bacteria and other pathogens in building water piping systems ...
 - by just applying the right layout and design of the piping system and using some innovative valves and fittings
- No chemical (or any other type of) disinfection is needed but the proposed system also supports the distribution and efficiency of such method throughout the entire piping system

Sample Building

Sample Building

Sample Building

Conventional type 1

Conventional type 2

Conventional type 2

Potable Water Hygiene System Conventional type 1+2

First improvement

First improvement

Comparison

Dynamic Flow Splitter

Low flow rate in the supply pipe

Options

- Control system with
 - Automated flushing valves
 - Sensors
 - Temperature: allows temperature dependend flushing
 - Volume Flow: allows flow controlled flushing
 - Float switch: avoids flooding in case of a blocked drain
 - Monitoring
 - Temperature, volume, time
 - Every incident (flushing, temperature, ...)

Comparison

TODAY's	TOMORROW
Standard Situation	Potable Water Hygiene System
 Stagnant Water Dead legs, twigs (truncated pipes) No use as intended of all taps 	 Regular water exchange Loop rings with constant water flow substitute twigs No need to open taps

Comparison

TODAY's Standard Situation	TOMORROW Potable Water Hygiene System
 Stagnant Water Dead legs, twigs (truncated pipes) No use as intended of all taps 	 Regular water exchange Loop rings with constant water flow substitute twigs No need to open taps
 Intermediate water temperature Cold water too warm Hot water too cold 	 Correct water temperature Cold water below 68 (77) °F Hot water above 131°F

Comparison

Actual and Predicted Free Chlorine Residual

Source: http://research.cecs.ucf.edu/drinkingwater/Students/Arevalo/Modeling_chlorine_dissipation_in_DS_Jorge_Arevalo_ACE04.pdf

Comparison

TODAY's Standard Situation	TOMORROW Potable Water Hygiene System
 Stagnant Water Dead legs, twigs (truncated pipes) No use as intended of all taps 	 Regular water exchange Loop rings with constant water flow substitute twigs No need to open taps
 Intermediate water temperature Cold water too warm Hot water too cold 	 Correct water temperature Cold water below 68 (77) °F Hot water above 122 (131) °F
 Nutrients like biofilm exist Chemicals for disinfection do not reach every point dilution and dissipation of e.g. Chlorine higher concentration is needed materials are stressed by chemicals 	 Build up of biofilms is prevented Constant water flow does not allow a build up of biofilms Chemicals are effectively utilized by reaching each point in the system regular replacement of used chemicals

Comparison

TODAY's Standard Situation	TOMORROW Potable Water Hygiene System
 Stagnant Water Dead legs, twigs (truncated pipes) No use as intended of all taps 	 Regular water exchange Loop rings with constant water flow substitute twigs No need to open taps
 Intermediate water temperature Cold water too warm Hot water too cold 	 Correct water temperature Cold water below 68 (77) °F Hot water above 122 (131) °F
 Nutrients like biofilm exist Chemicals for disinfection do not reach every point dilution and dissipation of e.g. Chlorine higher concentration is needed materials are stressed by chemicals 	 Build up of biofilms is prevented Constant water flow does not allow a build up of biofilms Chemicals are effectively utilized by reaching each point in the system regular replacement of used chemicals
Waterborne pathogens can easily proliferate and lead to serious and often fatal diseases	Hot as well as Cold water is kept clean with the help of the proposed <u>Potable Water Hygiene System</u>

Potable Water Hygiene System Cost estimate (Hospital renovation)

w/o measures

	А
Risk Level	Very High
Invest	N/A
Costs per year	N/A
ROI (<u>months</u>) compared to B	N/A
ROI (<u>months</u>) compared to C	N/A
ROI (<u>months</u>) compared to D	N/A

I	w/o measures	manual s flushing	chemical disinfection	
	А	В	С	
Risk Level	Very High	Medium	Medium	
Invest	N/A	0%	100%	
Costs per year	N/A	141%	42%	
ROI (<u>months</u>) compared to B	N/A	N/A	12.1	
ROI (<u>months</u>) compared to C	N/A	N/A	N/A	
ROI (<u>months</u>) compared to D	N/A	N/A	N/A	

r	w/o neasures	manual flushing	chemical disinfection	B+C
	A	В	С	D
Risk Level	Very High	Medium	Medium	Low
Invest	N/A	0%	100%	100%
Costs per year	N/A	141%	42%	183%
ROI (<u>months</u>) compared to B	N/A	N/A	12.1	Always more expensive
ROI (<u>months</u>) compared to C	N/A	N/A	N/A	Always more expensive
ROI (<u>months</u>) compared to D	N/A	N/A	N/A	N/A

n	w/o neasures	manual flushing	chemical disinfection	B+C	PWHS
	A	В	С	D	E
Risk Level	Very High	Medium	Medium	Low	Very Low
Invest	N/A	0%	100%	100%	98%
Costs per year	N/A	141%	42%	183%	5%
ROI (<u>months</u>) compared to B	N/A	N/A	12.1	Always more expensive	8.6
ROI (<u>months</u>) compared to C	N/A	N/A	N/A	Always more expensive	Always less expensive
ROI (<u>months</u>) compared to D	N/A	N/A	N/A	N/A	Always less expensive

	w/o measures	manual flushing	chemical disinfection	B+C	PWHS	C+E
	A	В	С	D	E	F
Risk Level	Very High	Medium	Medium	Low	Very Low	Lowest possible
Invest	N/A	0%	100%	100%	98%	198%
Costs per year	N/A	141%	42%	183%	5%	47%
ROI (<u>months</u>) compared to B	N/A	N/A	12.1	Always more expensive	8.6	25.2
ROI (<u>months</u>) compared to C	N/A	N/A	N/A	Always more expensive	Always less expensive	Always more expensive
ROI (<u>months</u>) compared to D	N/A	N/A	N/A	N/A	Always less expensive	8.6

References

Broadgreen Hospital, Liverpool / UK

- Hospital with 2,000 beds
- Southern annex equipped with the Potable Water Hygiene System
- 6 flow splitters

- Royal Victoria Building, Western General Hospital, Edinburgh / UK
 - New building opened in 2012
 - 14 valves, 27 sensors
 - 300 flow splitters
- Antrim Area Hospital Belfast / UK
 - 5 valves
 - 10 sensors for control
 - 12 sensors for monitoring
 - 90 flow splitters

- Intercontinental Davos / Switzerland
 - 50 valves, 70 sensors, 615 flow splitters

- Nuclear Power Station Emsland Lingen / Germany
 - Building for maintenance staff, occupied for one month per year only
 - 87 flow splitters

References

Crane vessels Balder + Thialf / The Netherlands

Balder 6300 tonnes lifting capacity Staff: more than 330 **Thialf** 2 x 7100 tonnes lifting capacity Staff: more than 730

- City of Dreams Hotel Tower Macau / China
 - 780 guest rooms
 - > 800 flow splitters
 - > 100 thermostatic balancing valves
 - Control system with
 > 100 sensors and
 - > 20 valves

Conclusions

- The Potable Water Hygiene System has been shown in Europe to be an outstanding solution to keep potable water in buildings clean
- The Potable Water Hygiene System yields better results and can be operated at much lower costs compared to conventional systems
- It can be combined with conventionel disinfection methods by improving the efficiency of such systems

Roland Blumenthal Gebr. Kemper GmbH + Co. KG Harkortstrasse 5, 57462 Olpe, GERMANY Phone +49 2761 891 425 RBlumenthal@kemper-olpe.de

Mark Boyce Kemper AIP Metals 518 Route 513, Suite B PO Box 195 Califon, NJ 07830, USA

Phone +1 732 800 1247 Mark.Boyce@kemperaipmetals.com

See you @ Perimeter Display