Water Saving Legislation

HOW TO CONSERVE WATER AND MAXIMIZE NON-CONSUMPTIVE USE OF GROUNDWATER BY DEVELOPING COOLING SYSTEMS BASED ON GEOTHERMAL TECHNOLOGY

Geothermal HVAC Systems:

Cooling Tower Conversion to Geothermal Sources Saves Precious Water

Jay Egg, CMC

Presentation Objectives

- Understand the context and verbiage of the (geothermal) technology
- Identify the importance, adaptability, and benefits of the technology as vital to water savings, infrastructure and building construction
- Understand why the geothermal is important to health, human safety, and imperative industry goals
- Internalize our collective capability and responsibility to make these changes
- Leave with the intent to offer, incentivize, specify, & apply the technology in every reasonable application going forward

Egg Geo and the Water Savings space in HVAC technologies

- Types of water/energy reduction measures
 - heat recovery,
 - geothermal,
 - wastewater heat sinks,
 - cold water storage (TES)

One size doesn't fit all. Your building design will to a large extent dictate what is feasible

Expand our thinking. Resorts are inclined to save water, but ONLY to the extent they can do it without significantly adding to their energy load.

Aquifer Thermal Energy Transfer Eliminates Cooling Towers

Geothermal fundamentals & some history

Egg Geo's part and a short history -

In the business since the 1930s; Authored two McGraw Hill Textbook on the subject

In Full Swing

Early Contracting Days

Now: Consulting & Education

A Passion for Sharing Knowledge

Plenary session at the 2022 GR Conference in Reno

What We Do Now

- Validation
- Consulting
- Guidance
- Education
- Code Compliance
- Program Writing
- Technical Steering
- Studies, Implementation, & Water Conservation Efforts

Capabilities: Expertise, Engineering, Education Application of 35 years of geothermal experience

<u>Expertise</u>

- Internal Client Studies
- Thought leadership
- Articles
- Textbooks
- Seminars
- Code writing

Education

- Transferring knowledge to engineering teams about geothermal methods models and techniques
- Advocacy about technologies and solutions
- Curriculum writing for specific trade groups and professional organizations

Engineering (Consulting)

- Feasibility Studies
 - Design
 - Thermal loads of community
 - Thermal bandwidth of piping
 - Layout of infrastructure
 - Needs +1
 - Costs of material and labor
 - Incentives from federal, local and utilities
- Owners Rep Services
 - Validation
 - RFPs
 - Construction oversight
 - Commissioning

Providing Infrastructure Level Guidance

 The use of evaporative cooling towers consumes high volumes of fresh water, diminishing the water use effectiveness (WUE) to 1.8 liters/kWh. This is responsible for the growing fresh water consumption that is stressing the record low reserves of fresh water around the world.

Wyoming Hyperscale liquid cooled White Box data centers Wyoming Hyperscale Indoor Farms

Moving Energy Instead of Evaporating Water; a "Win-Win"

Copyright ©2024 Egg Geo LLC

Infrastructure Studies, Engineering & Implementation

Thermal Energy Network Modeling Penn South Campus and Adjoining Properties

33

© 2022 EggGeo Consulting

Thermal Energy Networks - Empire State; Developed for NYSERDA

Sharing Energy within Resorts and Communities -Elimination of Cooling Towers and Boilers

Cooling Towers: Functions & Purpose

A cooling tower usually is part of a recirculated water system that has been incorporated into a building's cooling system, industrial processes, refrigeration or energy generators. They use the principle of evaporative cooling to increase the cooling effectiveness of a building's systems.

Water Conservation = New Water Let's Understand: Where is our water going?

https://www.epa.gov/watersense/types-facilities

7% 15% 35% 9% 7% 7% 20% Cooling **Towers**

End Uses of Water in Hospitals

Kitchen/Dishwashing Landscaping Cooling and Heating ______ Domestic/Restroom Medical Equipment Laundry Other

Where is our water use in Office Buildings?

- In many commercial buildings, cooling towers (CTs) are among the highest consumers of water
- They (CTs) consume more water that landscaping or kitchens in office buildings.

End Uses of Water in Office Buildings

Elimination of Cooling Towers = New Water

A Small (250Ton) C/T can use ~15,000 GPD

Aquifer Coupled Thermal Exchange Reduces First Cost, and Eliminates Cooling Towers

SIMPLIFIED FUTURE FLOW DIAGRAM

Building Mechanical Design and Upgrades

Copyright ©2024 Egg Geo LLC

Some Permanent Solutions Provided by Geothermal Upgrades Include:

Wastewater & SkyCool Technologies

Wastewater Energy Exchange

Recommended Legislation: "Cooling Towers Shall Not Be Supplied from Aquifers or Potable Water"

Cooling Tower Elimination: Water Savings Energy Savings Improvement in Infrastructure

End Game: Can Las Vegas implement like NYC Local Law 97?

This ends up being best described as a sort of Cap & Trade method. In NY, they want to reduce greenhouse gas (GHG) emissions, in Nevada, you want to reduce water consumption (from evaporative cooling towers).

Local Law 97 Overview

Starting in 2024, buildings will be mandated to meet greenhouse gas emission limits or pay penalties

Buildings subject to LL84/33(Energy Benchmarking) must comply

>Emission limits will change and become **tougher** in 2030

Similarly, Las Vegas could pass regulations...

NYC Climate Mobilization Act

What is it?

- The New York City Council recently passed a package of bills that
 - directly impacts NYC buildings
 - aims to significantly reduce the City's greenhouse gas emissions
- > The key bills passed were:
 - Local Law 95 Adjusts energy letter grade ranges
 - Local Law 96 Establishes new financing options including the Property Assessed Clean Energy (PACE) Program
 - Local Law 97 Mandates emission limits and establishing financial penalties

- Las Vegas Water Mobilization Act
- Aims to significantly reduce water evaporation/waste
- Mandates water consumption limits (for Cooling Towers) and establishes financial penalties

Economics and Energy Savings

Geothermal Systems are economically attractive because they:

- Are highly energy efficient
- Eliminate C/T related freshwater consumption
- Provide storm-proofing (All indoor system lowers first cost in certain instances)
- Clears up valuable roof space and other real estate
- Has great longevity (no C/Ts to weatheraway; Geo wells are permanent)

Typical CHW Flow Diagram

Affected Scope of Work Area

- Minimal changes need to be made to the existing design
- NOTE: Potential for greater system improvement with new construction/earlier adoption

Pump & Injection (Class V UIC Wells) – Ground Water for Base-Load; Leave Cooling Tower (N+1)

Snapshot of Results of Alt 2 (Turn Off One Alternative 2 vs Alternative 1

TRACE p 4

Year	Cash Flow Difference	Cumulative Cash Flow Difference	Present Value of Flow Difference	Net Present Value	
0	-1,300,000.00	-1,300,000.00	-1,300,000.00	-1,300,000.00	
1	268,529.66	-1,031,470.34	248,064.35	-1,051,935.65	
2	1,341,863.29	310,392.94	1,145,123.89	93,188.24	
3	284,883.11	595,276.05	224,586.17	317,774.41	
4	293,429.59	888,705.64	213,693.99	531,468.39	
5	302,232.49	1,190,938.13	203,330.09	734,798.48	
6	311,299.44	1,502,237.57	193,468.81	928,267.29	
7	320,638.43	1,822,876.00	184,085.79	1,112,353.08	
8	330,257.58	2,153,133.59	175,157.85	1,287,510.93	
9	340,165.31	2,493,298.90	166,662.90	1,454,173.83	
10	260,738.36	2,754,037.26	118,011.93	1,572,185.76	
11	360,881.38	3,114,918.65	150,889.00	1,723,074.76	
12	750,986.55	3,865,905.20	290,066.35	2,013,141.11	
13	382,859.04	4,248,764.24	136,608.03	2,149,749.14	
14	394,344.80	4,643,109.04	129,982.69	2,279,731.83	
15	406,175.16	5,049,284.20	123,678.69	2,403,410.52	
16	418,360.39	5,467,644.59	117,680.41	2,521,090.93	
17	430,911.23	5,898,555.82	111,973.05	2,633,063.98	
18	443,838.55	6,342,394.37	106,542.48	2,739,606.46	
19	457,153.71	6,799,548.08	101,375.30	2,840,981.76	
20	361,607.58	7,161,155.66	74,076.34	2,915,058.10	
21	484,994.36	7,646,150.02	91,780.58	3,006,838.68	
22	499,544.17	8,145,694.19	87,329.33	3,094,168.01	
23	514,530.51	8,660,224.70	83,093.95	3,177,261.96	
24	1,010,983.24	9,671,207.94	150,825.36	3,328,087.32	
25	545,865.41	10,217,073.35	75,229.48	3,403,316.80	

RUN 421 \$100k CT Credit / 10% EPA Tax Credit

MONTHLY UTILITY COSTS

By ENGINEERING MATRIX, INC.

Water Savings:

Utility Cost Per Area =

565,168.86 \$/ft2

Monthly Utility Costs													
Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Alternative 1													
Electric													
On-Pk Cons. (\$)	5,322	6,852	7,927	11,402	13,566	15,102	2	15,930	14,532	12,154	7,872	7,616	133,898
Off-Pk Cons. (\$)	2,227	5,556	4,857	8,353	11,232	12,012	3	12,545	11,552	8,901	11,715	10,828	112,322
Mid-Pk Cons. (\$)	9,402	11,931	14,557	7,160	8,940	10,116	3	10,759	9,775	7,677	4,486	5,032	110,268
On-Pk Demand (\$)	7,765	8,330	9,402	9,993	11,391	12,380	9	12,380	12,120	10,385	9,993	8,808	125,196
Total (\$):	24,716	32,669	36,743	36,908	45,128	49,610	7	51,614	47,979	39,117	34,067	32,285	481,683
Water						·	$\overline{}$						
On-Pk Cons. (\$)	15,131	22,770	24,657	25,171	31,483	32,559	33,710	34,067	31,890	25,769	24,406	24,004	325,616
Monthly Total (\$):	39.847	55 439	61 400	62.079	76,611	82,169	84,557	85,681	79,869	64 886	58,473	56,289	807,298
Building Area = 1 ft	2												
Utility Cost Per Area = 807	,298.48 \$/	′ft²											
												_	
Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Iotal
Iternative 2													
Electric													
On-Pk Cons. (\$)	5,297	6,819	7,874	11,100	12,893	14,120	P P	14,838	13,519	11,458	7,794	7,594	127,874
Off-Pk Cons. (\$)	2,230	5,569	4,874	8,307	10,957	11,121		11,466	10,852	8,451	11,594	10,793	107,678
Mid-Pk Cons. (\$)	9,335	11,849	14,364	7,023	8,562	9,391		9,928	9,047	7,261	4,404	4,986	105,765
On-Pk Demand (\$)	7,557	8,083	8,945	9,563	10,352	11,763		11,763	11,515	9,530	9,483	8,526	118,717
Total (\$):	24,419	32,320	36,058	35,993	42,763	46,396		47,995	44,933	36,700	33,275	31,899	460,035
							7 7						
Water													
On-Pk Cons. (\$)	4,497	6,113	6,858	7,220	11,275	11,760	12,397	12,591	11,529	7,639	6,847	6,408	105,134
Monthly Total (\$):	28,916	38,433	42,915	43,213	54,038	58,155	59,681	60,585	56,462	44,339	40,122	38,307	565,169
		S	aving	up to	o \$21	,000 i	n wat	er &	6MM	Gallo	ns/m	onth	
Building Area = 1 ft ²			0		• •						'		

TRACE pp 24-25 (Switched from Gallons to \$'s on consolidated report)

Alt #1 & #2; Plant Operation Details/Sequence

TRACE pp 27-30 (Change-Savings in C/T kWh Operations)

EQUIPMENT ENERGY CONSUMPTION By ENGINEERING MATRIX, INC. Alternative: 1 (3)775T WCC, (3)CT ----- Monthly Consumption -----Equipment - Utility Jan Feb Mar Apr May June July A Bsu 1: Finfrock Project 801 load profile Proc. Chill Water (ton-hrs) 379,091.8 570,314.2 617,001.1 629,656.2 788,824.9 816,285.1 845,296.7 854 Peak (tons) 1,298.5 1.376.0 1.472.9 1.550.4 1.783.0 1.938.0 1.918.6 1.93 Cpl 1: Cooling Plant - 001 [Sum of dsn coil capacities=1,938 tons] Water-Cooled Chiller 01 [Clg Nominal Capacity/F.L.Rate=775 tons / 449.5 kW] (Cooling Equipment) 209.606.5 Electric (kWh) 122 116 2 196 980 3 209 581 5 213 708 8 218.345.7 221,243.6 222.2 432.0 432.0 440.7 387.5 38 Peak (kW) 415.9 440 7 Project 801 Cooling Twr 3-Cell [Design Heat Rejection/F.L. Electric (kWh) 6 032 5 9 535 1 13.2 75.9 68.299.8 74 361 3 17 Peak (kW) 54.6 75.0 176.9 176.9 Project 801 Cooling Twr 3-Cell Make Up Water (1000gal) 4,089.4 6.154.1 6.66 8,799.8 9,110.8 9.20 20.9 20.6 Peak (1000gal/Hr) 14.0 14.8 20 Project 801 Var Vol CHW Pump [F.L.Rate=74.57 kW] (Misc Accessory Equipme 24,308.4 Electric (kWh) 15,159,4 23.033.1 23.795.0 23,251.6 25.585.3 25.196.7 25.6 70.0 72.2 72.2 Peak (kW) 70.0 65.9 58.0 58.0 58 Project 801 Var Vol CW Pump [F.L.Rate=149.1 kW] (Cooling Plant Circulation Pump) Electric (kWh) 11.427.5 16.967.0 18 993 6 20.040.5 28.337.6 31.846.4 33.036.6 34,1 Peak (kW) 42.1 46.9 53.5 594 80.3 97.0 94.8 97 Water-Cooled Chiller 02 [Clg Nominal Capacity/F.L.Rate=775 tons / 449.5 kW] (Cooling Equipment) Electric (kWh) 91.057.6 124.434.8 140.522.7 139.696.5 152,482,1 157.593.7 158.466.6 160. Peak (kW) 357.6 381.1 415.9 440.7 387.5 440.7 375.0 37 Project 801 Var Vol CHW Pump [F.L.Rate=74.57 kW] (Misc Accessory Equipment) 19.627.3 Electric (kWh) 11 187 1 14 938 6 17 587 9 17 887 4 17 333 0 19 040 2 19.6 Peak (kW) 49 1 56 1 65.9 72.2 58.0 72.2 54.3 54 Water-Cooled Chiller 03 [Clg Nominal Capacity/F.L.Rate=775 tons / 449.5 kW] (Cooling Equipment) Electric (kWh) 0.0 0.0 0.0 8,736.9 77,189.5 80,884.8 92,692.5 94,4 EQUIPMENT ENERGY CONSUMPTION By ENGINEERING MATRIX, INC.

Alternative: 2 (3)775T WCC, (2)CT, (1)898T HX

Monthly Consumption													
Equipment - Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Bsu 1: Finfrock Project 801 loa	ad profile												
Proc. Chill Water (ton-hrs)	379,091.8	570,314.2	617,001.1	629,656.2	788,824.9	816,285.1	845,296.7	854,308.2	799,425.1	644,636.6	610,469.6	600,779.0	8,156,088.0
Peak (tons)	1,298.5	1,376.0	1,472.9	1,550.4	1,783.0	1,938.0	1,918.6	1,938.0	1,899.2	1,550.4	1,531.0	1,434.1	1,938.0
Cpl 1: Cooling Plant - 001 [Su	m of dsn co	il capacities:	=1,938 tons]										
Water-Cooled Chiller 01 [Clg Nominal Capacity/F.L.Rate=775 tons / 449.5 kW] (Cooling Equipment - Cooling Mode)													
Electric (kWh)	122,116.2	196,980.3	209,581.5	209,606.5	213,708.8	218,345.7	221,243.6	222,262.7	213,773.6	209,525.3	206,636.1	209,549.9	2,453,330.0
Peak (kW)	432.0	432.0	415.9	440.7	387.5	440.7	387.5	387.5	423.8	432.0	440.7	432.0	440.7
_Project 801 Cooling Twr 2-Ce	ell [Design H	leat Rejectio	on/F.L	0 700 topo /	117 V]								
Electric (kWh)	3,085.3	4,661.2	6,3			25,858.0	25,624.3	26,861.9	19,232.9	12,033.4	7,415.4	5,223.8	160,117.5
Peak (kW)	28.4	37.8	4		/	118.0	118.0	118.0	118.0	118.0	47.6	31.0	118.0
_Project 801 Cooling Twr 2-Ce	ell												
Make Up Water (1000gal)	1,215.4	1,652.1	1,8			3,178.3	3,350.5	3,402.9	3,116.0	2,064.7	1,850.6	1,731.9	28,414.7
Peak (1000gal/Hr)	4.8	5.1	5			9.6	9.5	9.6	9.4	7.7	5.7	5.3	9.6
Proiect 801 Var Vol CHW Pu	mp (F.L.Rat	e=74.57 kW	1 (Misc Ad	cessory Equ	ipme (t)								
Electric (kWh)	15.159.4	23.033.1	23.795.0	24.308.4	23.251.6	25.585.3	25,196,7	25.625.8	24.482.8	23.360.2	24.078.4	24.096.3	281,972.8
Peak (kW)	70.0	70.0	65.9	72.2	58.0	72.2	58.0	58.0	67.9	70.0	72.2	70.0	72.2
Project 801 Var Vol CW Pum	p (F.L.Rate	=99.4 kWl	(Cooling Pl	ant Circulatio	on Pump)								
Electric (kWh)	7,618.4	11,311.3	12,662.4	13,360.3	18,891.7	21,231.0	22,024.4	22,749.7	20,388.5	13,708.0	12,806.8	12,188.6	188,941.1
Peak (kW)	28.1	31.3	35.7	39.6	53.5	64.7	63.2	64.7	61.7	39.6	38.6	33.9	64.7
Var vol geothermal loop pump	[F.L.Rate=	119.3 kW]	(Plant Geot	hermal Pum	p)								
Electric (kWh)	5,516.5	9,162.6	10,071.3	9,807.0	10,178.8	9,923.1	10,235.1	10,234.9	9,889.9	10,087.4	9,759.9	10,047.7	114,914.2
Peak (kW)	14.4	14.4	14.4	14.5	14.3	14.5	14.3	14.3	14.4	14.4	14.5	14.4	14.5
Water-Cooled Chiller 02 [Clg N	Nominal Ca	pacity/F.L.Ra	ate=775 tons	s / 449.5 kW]	(Cooling	Equipment))						
Electric (kWh)	91,057.6	124,434.8	140,522.7	139,696.5	152,482.1	157,593.7	158,466.6	160,415.3	154,521.8	138,907.5	140,743.8	130,812.6	1,689,655.0
Peak (kW)	357.6	381.1	415.9	440.7	387.5	440.7	375.0	375.0	423.8	432.0	440.7	401.1	440.7
_Project 801 Var Vol CHW Put	mp [F.L.Rat	e=74.57 kW] (Misc Ac	cessory Equ	ipment)								
Electric (kWh)	11,187.1	14,938.6	17,587.9	17,887.4	17,333.0	19,627.3	19,040.2	19,628.1	18,755.1	16,995.7	18,289.2	16,282.7	207,552.4
Peak (kW)	49.1	56.1	65.9	72.2	58.0	72.2	54.3	54.3	67.9	70.0	72.2	61.9	72.2

Peak (kW)

0.0

0.0

0.0

291.2

328.5

355.8

352.2

35

RUN 421

\$100k CT Credit / 10% EPA Tax Credit

Represents Energy Dissipated to Ground Water

TRACE p 13

RUN 421 \$100k CT Credit / 10% EPA Tax Credit

Geothermal Energy Transfer Summary

By ENGINEERING MATRIX, INC.

Geothermal Plant - Ground-Source Heat Transfer

Alternative: 3 - (3)775T WCC, (1)CT, (2)898T HX Plant: Cooling Plant - 001

Year: 1																
	QExtracted	from Geothern	nal Loop	QRejecte	ed to Geotherm	al Loop	Hea	t Rejected to A	Auxiliary Coolin	g	Heat S	upplied from S	upplemental Bo	iler	Compress	sor
Month	ton-hrs	kBtu	kWh	ton-hrs	kBtu	kWh	peak tons	ton-hrs	kBtu	kWh	peak MBH	ton-hrs	kBtu	kWh	Energy	kWh
Jan	0	0	0	-439,723	-5,276,676	-1,546,052	0	0	0	0	0	0	0	0		213,174
Feb	0	0	0	-661,731	-7,940,775	-2,326,626	0	0	0	0	0	0	0	0		321,415
Mar	0	0	0	-716,575	-8,598,900	-2,519,455	0	0	0	0	0	0	0	0		350,104
Apr	0	0	0	-713,499	-8,561,989	-2,508,640	600	17,989	215,867	63,249	0	0	0	0		358,039
May	0	0	0	-754,394	-9,052,729	-2,652,426	688	160,534	1,926,406	564,432	0	0	0	0		443,380
Jun	0	0	0	-776,695	-9,320,339	-2,730,835	747	169,518	2,034,214	596,019	0	0	0	0		456,824
Jul	0	0	0	-785,675	-9,428,096	-2,762,407	740	193,981	2,327,770	682,030	0	0	0	0		472,402
Aug	0	0	0	-792,126	-9,505,507	-2,785,089	747	197,899	2,374,792	695,808	0	0	0	0		477,177
Sep	0	0	0	-760,566	-9,126,794	-2,674,127	732	166,184	1,994,202	584,296	0	0	0	0		447,679
Oct	0	0	0	-711,694	-8,540,324	-2,502,292	600	37,177	446,126	130,714	0	0	0	0		366,489
Nov	0	0	0	-709,269	-8,511,229	-2,493,768	0	0	0	0	0	0	0	0		347,380
Dec	0	0	0	-697,584	-8,371,006	-2,452,683	0	0	0	0	0	0	0	0		340,363
Annual	0	0	0	-8.519.530	-102,234,368	-29,954,400	747	943,281	11,319,377	3,316,548	0	0	0	0		4,594,425

Alternate #3: Turn Off 2 Cooling Towers

Economic Comparison Summary

\$100k CT Credit / 10% EPA Tax Credit

RUN 421

Economic Summary

Project Information

Location	South East	Study Life:	25 years
Project Name	Finfrock Project 801	Cost of Capital:	8.25 %
User	CJM	Alternative 1:	(3)775T WCC, (3)CT
Company	Engineering Matrix	Alternative 2:	(3)775T WCC, (2)CT, (1)898T HX
Comments	Alterantives analysis of New CEP at Project 801	Alternative 3:	(3)775T WCC, (1)CT, (2)898T HX

Economic Comparison of Alternatives

		Yearly Savings (\$)	First Cost Difference (\$)	Cumulative Cash Flow Difference (\$)	Simple Payback (yrs.)	Net Present Value (\$)	Life Cycle Payback (yrs.)	Internal Rate of Return (%)	Life Cycle Cost Difference
	Alt 2 vs Alt 1	268,530	1,300,000	10,217,070	4.8	3,403,317	1.9	39.0	3,403,317.00
_	Alt 3 vs Alt 1	377,625	1,800,000	14,407,030	4.8	4,580,533	2.5	35.1	4,580,533.00
$\overline{}$	Alt 3 vs Alt 2	109,096	500,000	4,189,953	4.6	1,177,216	5.0	26.9	1,177,216.00

Annual Operating Costs

	Yearly Savings vs Alt 2	Yearly Total Operating Cost (\$)	Yearly Utility Cost (\$)	Yearly Maintenance Cost (\$)	Plant kWh/ton-hr							
Alt 1	-268,53	1,173,099	807,299	365,800	0.717							
Alt 2		904,569	565,169	339,400	0.687							
Alt 3	109,09	5 795,473	467,173	328,300	0.686							
	Copyright ©2024 Egg Geo LLC											

TRACE P 3

Calculating

Matak Caving and

MONTHLY UTILITY COSTS

By ENGINEERING MATRIX, INC.

vvale	r Saving	5.					Monthly U	Itility Costs			
	Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct
	Alternative 1										
	Electric							_			
	On-Pk Cons. (\$) Off-Pk Cons. (\$) Mid-Pk Cons. (\$) On-Pk Demand (\$)	5,322 2,227 9,402 7,765	6,852 5,556 11,931 8,330	7,927 4,857 14,557 9,402	11,402 8,353 7,160 9,993	13,566 11,232 8,940 11,391	15,102 12,012 10,116 12,380	2 3 3 9	15,930 12,545 10,759 12,380	14,532 11,552 9,775 12,120	12,154 8,901 7,677 10,385
	Total (\$): 24,716	32,669	36,743	36,908	45,128	49,610	7	51,614	47,979	39,117
	Water							\bigvee			
	On-Pk Cons. (\$)	15,131	22,770	24,657	25,171	31,483	32,559	33,710	34,067	31,890	25,769
TRACE pp 24-25	Monthly Total (\$	5): 39,847	55,439	61,400	62,079	76,611	82,169	84,557	85,681	79,869	64,886
(Switched from Gallons to S's on	Building Area = Utility Cost Per Area =	1 ft² 807,298.48 \$	/ft²								
concolidated	Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct
	Alternative 2										
report)	Electric							_			
	On-Pk Cons. (\$) Off-Pk Cons. (\$) Mid-Pk Cons. (\$) On-Pk Demand (\$)	5,297 2,230 9,335 7,557	6,819 5,569 11,849 8,083	7,874 4,874 14,364 8,945	11,100 8,307 7,023 9,563	12,893 10,957 8,562 10,352	14,120 11,121 9,391 11,763		14,838 11,466 9,928 11,763	13,519 10,852 9,047 11,515	11,458 8,451 7,261 9,530
	Total (\$):	24,419	32,320	36,058	35,993	42,763	46,396		47,995	44,933	36,700
	Water										

 $\mathbf{\nabla}$ On-Pk Cons. (\$) 4,497 6,113 6,858 7,220 11,275 11,760 12,397 12,591 6,408 11,529 7,639 6,847 Monthly Total (\$): 28,916 38,433 42,915 43,213 54,038 58,155 59,681 60,585 56,462 44,339 40,122 38,307 Saving up to \$21,000 in water & 6MM Gallons/month

Building Area = 1 ft² Utility Cost Per Area = 565,168.86 \$/ft²

Copyright ©2024 Egg Geo LLC

RUN 421

Total

133,898

112,322

110,268

125,196

481,683

325,616

807,298

Total

127.874

107,678

105,765

118,717

460,035

105,134

565,169

\$100k CT Credit / 10% EPA Tax Credit

Dec

7,616

10,828

5,032

8,808

32,285

24,004

56,289

Dec

7,594

10,793

4,986

8,526

31,899

Nov

7,872

11,715

4,486

9,993

34,067

24,406

58,473

Nov

7,794

11,594

4,404

9,483

33,275

Calculating savings and cost (Hotel/Campus)

PROJECT 801 MODEL (Series 400 Runs) RESULTS: SCENARIO #3: (EPA TAX CREDIT Only; NO IRS MACRS TAX BENEFIT; NO UTILITY REBATES) - \$0 CREDIT for CTs

SCENARIO #3: WORST CASE w/ EPA TAX Credit

RUN 420

UTILIT	COSTS			MAINTENANCE COST	ANNUAL OPERATING COST	ANNUAL OPERATING SAVINGS				FINANCIALS						
(A)	(B)	() (A)	(C)=) + (B)	(D)	(E) = (C) + (D)	(F)	(G)	(H)	(1)	(μ)	(K) = (G) + (H) + (I) + (J)		(L)	(M) = (L)/(P)		
Annual Cr of Electric	st Annual Cos ty of Water	Anı t UTILIT (Elec &	nual TY Cost & Water)	Annual MAINTENANCE Cost	TOTAL OPERATING Cost (UTILITY plus MAINTENANCE)	TOTAL OPERATING SAVINGS (UTILITY plus MAINTENANCE)	Estimated HVAC System Cost (less Ductwork and CTs)	CT Cost	CT CREDIT Received	GEO System Cost	TOTAL Construction Cost	FEDERAL EPA TAX CREDIT of 10% of HVAC System Cost Rec'd in Year 2 (less Ductwork)	Construction PREMIUM to Add Geothermal	Simple Payback (Years) *	Life-Cycle Payback (Years)	IROR
Alt 1 BASE CASE (3 CTs) \$ 481,6	\$ 325,616	s	807,298	\$ 365,800	\$ 1,173,098	N/A (Base Case)	\$ 8,561,750	\$ 581,250	s -	ş -	\$ 9,143,000	N/A (Base Case)	N/A (Base Case)	N/A	N/A	N/A
Alt 2 Remove 1 CT Add HX Equivalent \$ 458,7	2 \$ 105,134	\$	563,846	\$ 342,700	\$ 906,546	\$ 266,552	\$ 8,561,750	\$581,250	ş -	\$ 1,400,900	\$ 10,543,900	\$ 1,054,390	\$ 346,510	1.30	2.00	35.8%
Alt 3 Remove 2 CTs Add HX Equivalent \$ 440,4	9 \$ 11,168	\$	451,638	\$ 334,300	\$ 785,938	\$ 387,161	\$ 8,561,750	\$581,250	\$-	\$ 2,000,900	\$ 11,143,900	\$ 1,114,390	\$ 886,510	2.29	3.00	32.0%
TOTAL LIFE CYCLE COST OF OWNERSHIP TOTAL LIFE CYCLE COST OF OWNERSHIP TOTAL LIFE CYCLE COST OF OWNERSHIP	in Present Worth in Present Worth in Present Worth	Dollars for AL Dollars for AL Dollars for AL	LT 1: LT 2: LT 3:	\$ 25,695,654 \$ 22,410,427 \$ 21.168,498								l		* Calculated on PWV	V; Building Model use	es Year 0 only

PROJECT 801 MODEL (Series 400 Runs) RESULTS: SCENARIO #4: (EPA TAX CREDIT; NO IRS MACRS TAX BENEFIT; NO UTILITY REBATES) - \$100,000 CREDIT for CTs

SCENARIO #4: MOST REALISTIC

RUN 421

	UTILITY CO	<u>OSTS</u>		MAINTENANCE COST	ANNUAL OPERATING COST	ANNUAL OPERATING SAVINGS	SAVINGS CONSTRUCTION COSTS								FINANCIALS			
	(C)= (A) (B) (A) + (B) (D				(E) = (C) + (D)	(F)	(G)	(H)	(1)	(μ)	(K) = (G) + (H) + (I) + (J)		(L)	(M) = (L)/(P)				
	Annual Cost of Electricity	Annual Cost of Water	Annual UTILITY Cost (Elec & Water)	Annual MAINTENANCE Cost	TOTAL OPERATING Cost (UTILITY plus MAINTENANCE)	TOTAL OPERATING SAVINGS (UTILITY plus MAINTENANCE)	Estimated HVAC System Cost (less Ductwork and CTs)	CT Cost	CT CREDIT Received	GEO System Cost	TOTAL Construction Cost	FEDERAL EPA TAX CREDIT of 10% of HVAC System Cost Rec'd in Year 2 (less Ductwork)	Construction PREMIUM to Add Geothermal	Simple Payback (Years)*	Life-Cycle Payback (Years)	IROR		
Alt 1 BASE CASE (3 CTs)	\$ 481,683	\$ 325,616	\$ 807,298	\$ 365,800	\$ 1,173,098	N/A (Base Case)	\$ 8,561,750	\$ 581,250	\$ -	s -	\$ 9,143,000	N/A (Base Case)	N/A (Base Case)	N/A	N/A	N/A		
Alt 2 Remove 1 CT Add HX Equivalent	\$ 460,035	\$ 105,134	\$ 565,169	\$ 339,400	\$ 904,569	\$ 268,529	\$ 8,561,750	\$581,250	\$100,000	\$ 1,400,900	\$ 10,443,900	\$ 1,044,390	<mark>\$ 256,510</mark>	0.96	1.90	39.0%		
Alt 3 Remove 2 CTS Add HX Equivalent	\$ 456,005	\$ 11,168	\$ 467,173	\$ 328,300	\$ 795,473	\$ 377,625	\$ 8,561,750	\$581,250	\$200,000	\$ 2,000,900	\$ 10,943,900	\$ 1,094,390	\$ 706,510	1.87	2.50	35.1%		
DTAL LIFE CYCLE COST OF OWNERSHIP in Present Worth Dollars for ALT 1: DTAL LIFE CYCLE COST OF OWNERSHIP in Present Worth Dollars for ALT 2: DTAL LIFE CYCLE COST OF OWNERSHIP in Present Worth Dollars for ALT 3:			\$ 25,695,654 \$ 22,292,337 \$ 21,115,122							•			•					

The opportunities for load diversity and hybrid applications are vast

Commercial: Ground Water Sourced of Class V UIC Geothermal

There are more ways than we think: New Developments are using drinking water:

Valley Stream Middle School entered a project that was a collaboration between a manufacturer, American Water, and the New York Public Service Commission.

The 40,000 square-foot school was outfitted with new geothermal heat pumps, and the heat pumps were fed by the existing water main

Use of Water-Mains as a Geothermal Source

The ultimate goal of this configuration will result in the piping as depicted here. The water will be returned to the water main, certified as clean and safe for human consumption.

This project has been under test and certification for almost two years. Once approved by the PSC for public use, government building will be able to apply for permits to use water-mains as their geothermal source.

Valley Stream Elementary in New York

Geothermal Heat Pump (Left) and Exchanger Room (Above)

ORNL: Evaluation of the Impacts of Heat Exchanger Operation on Quality of Water Used as Heat Source and Sink

Newsday

Reprints

elementary-1st-in-u-s-to-test-high-tech-geothermal-heatingcooling-system-1.10829464 This copy is for your personal, non-commercial use only. To order presentation-ready copies for fatribution to colleagues, clients or customers, use the Reprints tool at the top of any article or order a reprint of this article now.

OAK RIDGE NATIONAL LABORATORY

http://www.newsday.com/long-island/nassau/valley-stream

Valley Stream elementary school first in US to test new type of geothermal heating, cooling system

September 13, 2015 By EMILY C. DOOI

Evaluation of the Impacts of Heat Exchanger Operation on Quality of Water Used as Heat Source and Sink

Ellen D. Smith Xiaobing Liu June 30, 2018

ORNL/TM-2017/382

Approved for public release. Distribution is unlimited.

From the ORNL Study:

• *"Data were compared with regulatory"* standards and inflow and outflow data were compared to identify changes occurring in the water resulting from its passage through the heat exchanger. Review of the data identified no conditions that would prevent the use of heat exchange outflow water for water supply. Inflow and outflow water quality conforms with applicable regulatory standards."

Commercial: Ground Water Sourced of Class V UIC Geothermal In Practice for Decades. Out of Sight; Out of Mind

Cooling tower to Geothermal Example

Thermal Network Integration for City Centers

Thermal Network Integration for City Centers

© 2024 Egg Geo, LLC

Heat Energy Expelled from Cooling Towers is Piped to the Residential Apartments

Thermal Energy Network Concept: "TEN"

Beyond Financial Benefits

Beyond financial benefits of geothermal heating and cooling technologies lies an impressive list of environmental benefits; many of which are not considered at first.

Energy efficiency investments may have a payoff or return on investment longer than a company's typical hurdle rate. Some of the value that is not always measured when considering sustainable initiatives such as geothermal HVAC include:

- Reduced reliance on fossil fuels
- Reduced price risk
- Easier planning due to stability of fuel sources
- "Eco-Immunity"
- Increased likelihood to be the vendor of choice
- Increased attractiveness to valuable talent

Public Relations

As stated above, companies that make the shift to renewable energy sources such as geothermal sourced chiller plants fit a model for a growing consumer base that may include tourism.

Sustainable Advancements

Sustainability initiatives are met favorably through the elimination of cooling towers and reductions in chemical consumables, labor, and energy and water consumption, along with an increase in usable space normally reserved for the footprint of a cooling tower. Renewable Energy employment (Direct use geothermal)

Some Important Points to Recap:

- Water Conservation = New Water
- Public Health & Safety
 - Do Nevada statutes empower the Water Management Districts within the WMD and DEP rules?
- Can Las Vegas implement like NYC Local Law 95-97?
- Storm Resistance & Hardening
- Economics and Energy Savings
 - Lifecycle (longevity) and reduced maintenance and chemicals
 - Green Benefits
- Develop a precedent with Egg Geo studies, implementation, and validation efforts.

Geothermal Provides Water Savings. Geothermal Provides New Water.

Take-A-Ways:

1. Geothermal systems enable water savings (= New Water)

- 2. Geothermal systems improve building performance
- 3. Geothermal systems increase Public Health & Safety
- 4. Geothermal systems provide greater energy–efficiency
- 5. Geothermal systems increase longevity of equipment

Defining the Future of Geothermal

Water Saving Legislation

HOW TO CONSERVE WATER AND MAXIMIZE NON-CONSUMPTIVE USE OF GROUNDWATER BY DEVELOPING COOLING SYSTEMS BASED ON GEOTHERMAL TECHNOLOGY

Geothermal HVAC Systems:

Cooling Tower Conversion to Geothermal Sources Saves Precious Water

Jay Egg, CMC

End of Water Saving Presentation